THE REACTIVITY OF SUPEROXIDE: A POTENT OXIDANT GENERATED IN SITU FROM SUPEROXIDE AND CO2

Hiroshi Yamamoto, Tadahiko Mashino, Tetsuo Nagano and Masaaki Hirobe* Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract: The reaction of CO₂ with superoxide cooxidized sulfides and olefins to the corresponding sulfoxides and epoxides, respectively, in dimethylformamide. The peroxy intermediates, CO_4^7 and $C_2O_6^7$, generated in situ from superoxide and CO₂, were proposed as the ultimate oxidants in the oxidations.

Superoxide (O_2^{-7}) appears to play an important role in various biological processes, such as inflammation,¹⁻³ carcinogenesis,⁴⁻⁷ radiation-induced damage,^{8,9} aging,^{10,11} phagocytosis and enzyme reactions.¹² O_2^{-7} has been considered to have diverse but not vigorous reactivities compared with other active oxygen species such as •OH, $^{1}O_2$, H_2O_2 ,¹³ but has been reported to exert deleterious effects on living cells.^{14,15} Thus, the mechanism of the biological effects of O_2^{-7} has been of great interest.¹⁶⁻¹⁹

We have reported that O_2^{τ} oxidizes olefins and substrates having labile hydrogens in the presence of acyl halides or polyhalides.²⁰⁻²⁵ Furthermore, the phosphate moiety of nucleotides enhances the reactivity of O_2^{τ} in the nucleobase release reaction from nucleotides.^{26,27} O_2^{τ} reacts with halides or phosphate functional groups to form peroxy intermediates which have more vigorous reactivities than O_2^{τ} alone. These peroxy radical intermediates, generated in situ from O_2^{τ} and some halides or phosphates, have been revealed to be the species responsible for the oxidations.²⁸⁻³¹ Sawyer et al. have reported that in aprotic solvents, O_2^{τ} undergoes nucleophilic addition to carbon dioxide (CO₂) to yield peroxy intermediates (CO₄^{τ} and C₂O₆^{τ}).³² These species may be more reactive than O_2^{τ} alone.

In this communication, we report that peroxy intermediates, derived from O_2^{-1} and CO_2 , oxidize sulfides and olefins. In a general procedure, the substrate and 18-crown-6-ether were dissolved in dimethylformamide with bubbling CO_2 for five minutes, followed by addition of freshly prepared potassium superoxide (KO₂).³³ The reaction mixture was vigorously stirred at 15-20 °C under a CO₂ atmosphere for 20 hr. The reaction mixture was filtered and the product yields were determined by HPLC (Table I). When ethyl methyl sulfide was used as the substrate, ethyl methyl sulfoxide was obtained in good yield (84 %). From benzyl methyl

Substrate	Product %	Recovery %
Ethyl methyl sulfide	Ethyl methyl sulfoxide 84 (0)*	6 (98)
Benzyl methyl sulfide	Benzyl methyl sulfoxide 78 (0), Benzaldehyde 2 (0),	
	Benzoic acid 0 (49)	20 (41)
Dibenzyl sulfide	Dibenzyl sulfoxide 39 (0), Benzalehyde 1 (0),	
	Benzoic acid 2 (44)	47 (15)

Table I Cooxidation of Sulfides during Oxidation of CO2 with Superoxide

The reaction mixture contained 0.4 mmol of substrate, 4 mmol of KO₂ and 0.4 mmol of 18-crown-6-ether in dimethylformamide solution. Reactions were allowed to proceed for 20 h at 15 - 20 °C under a CO₂ atmosphere. * Values in parentheses indicate yields in the absence of CO₂.

Substrate	Product %	Recovery %
trans-Stilbene	trans-Stilbene oxide 12 (0), Benzaldehyde 1 (0)	
	Benzoic acid 1 (0)	63 (94)
Styrene	Styrene oxide 10 (0), Benzaldehyde 1 (0), Benzoic acid 1 (0)) 88 (95)
α -Methylstyrene	α-Methylstyrene oxide 23 (0), Acetophenone 14 (0)	57 (95)
β -Methylstyrene	β -Methylstyrene oxide 34 (0), Benzaldehyde 3 (0),	
	Benzoic acid 1 (11), Propiophenone 1 (0),	55 (83)
p-Chlorostyrene	p-Chlorostyrene oxide 4 (0), p-Chlorobenzoic acid 4 (8)	92 (84)

Table II Cooxidation of Olefins during Oxidation of CO2 with Superoxide

The reaction mixture contained 0.3 mmol of substrate, 3 mmol of KO₂ and 0.3 mmol of 18-crown-6-ether in dimethylformamide solution. Reactions were allowed to proceed for 20 h at 15 - 20 °C under a CO₂ atmosphere. *Values in parentheses indicate yields in the absence of CO₂.

sulfide and dibenzyl sulfide, the corresponding sulfoxides were obtained in 78 % and 39 % yield, respectively, along with the minor products benzaldehyde and benzoic acid. On the other hand, in the absence of CO₂, benzoic acid was mainly obtained (Table I). No sulfone was obtained from any sulfides with treatment of O_2^{T} and CO₂. When <u>trans</u>-stilbene was used as the substrate, the major product was <u>trans</u>-stilbene oxide (12 %). trans-Stilbene oxide was also obtained in 12 % yield using dry ice as the CO₂ source. From other olefins, the corresponding epoxides were also obtained as shown in Table II. In the absence of CO₂, these reactions did not proceed at all and the starting materials could be recovered. These results suggest that the reactive species generated from O_2^{T} and CO₂ should be a more potent oxidant than O_2^{T} .

We examined the incorporation of ¹⁸O into ethyl methyl sulfoxide and styrene oxide in the K¹⁸O₂ and CO₂ system in order to clarify the oxidation mechanism. K¹⁸O₂ was prepared from benzhydrol, potassium <u>tert</u>butoxide and ¹⁸O₂ according to the method of Rosenthal.³³ Since the resulting KO₂ powder contained a small amount of K¹⁶O₂, its K¹⁸O₂ content was determined by Raman spectroscopy. The KO₂ powder showed a strong Raman line at 1088 cm⁻¹ with a weak line at 1154 cm⁻¹ (Fig. 1). The line at 1154 cm⁻¹ could be

Figure 1. Raman spectrum of K¹⁸O₂ and K¹⁶O₂

-under Air or ¹⁶O₂ atmosphere
-under Ar atmosphere
- path
b)

assigned to the ¹⁶O-¹⁶O stretching vibration because Hendra et al. have reported almost the same Raman line (1148 cm⁻¹) of K¹⁶O₂,³⁴ while the line at 1088 cm⁻¹ could be assigned to ¹⁸O-¹⁸O stretching vibration because the $v = 2\pi (k/m)^{1/2}$ expression gave an estimation of 1087.8 cm⁻¹ as a Raman line of K¹⁸O₂. From the intensity ratio of the two lines, the content of K¹⁸O₂ was determined to be 78 %. Ar, air or ¹⁶O₂ gas was bubbled for 30 min into the reaction mixture before starting the reactions in order to examine the oxygen atom source incorporated into the reaction products under various ¹⁶O₂ concentration conditions. With bubbling Ar, 100 % incorporation of oxygen atoms derived from KO₂ into both of sulfoxide and styrene oxide were observed in the oxidations of the sulfide and styrene, based on the ¹⁸O₂⁻⁷ content of the KO₂ powder using GC-MS (JEOL DX-300). When air or ¹⁶O₂ gas was bubbled, the incorporation ratio of ¹⁸O decreased as the dissolved ¹⁶O₂ concentration increased; that is, the % incorporation ratios of ¹⁸O into ethyl methyl sulfoxide were 41 % and 10 % under air and ¹⁶O₂ bubbled conditions, respectively.

The results, that the isotope mixing was observed in the oxidations of styrene and ethyl methyl sulfide under aerobic conditions, not under Ar atmosphere, led us to propose the following reaction mechanism (Scheme I). O_2^{-7} reduces CO_2 to form CO_2^{-7} . Under aerobic conditions, ${}^{18}O_2$ produced from $K{}^{18}O_2$ or ${}^{16}O_2$ dissolved in the reaction solution attacks CO_2^{-7} to form CO_4^{-7} (path a or b in Scheme I), which may react with another CO_2 to form $C_2O_6^{-7}$. These radical species can oxidize sulfides and olefins. Under Ar atmosphere, as CO_4^{-7} and $C_2O_6^{-7}$ can be produced only from ${}^{18}O_2$ (path b), 100 % incorporation of ${}^{18}O$ into the reaction products was observed. The active oxidizing species are electrophilic, because electron-rich olefins such as α methylstyrene and β -methylstyrene were oxidized in better yields than electron-poor olefins such as pchlorostyrene (Table II) and no sulfones were obtained from the sulfides. When H_2O_2 was used instead of KO₂ in the oxidations, no oxidized products were obtained and the starting materials were recovered in 97 % yield. Furthermore, the peroxide HOOC(O)O⁻ can not be formed without H_2O in the KO₂-CO₂ system.³² These results indicate that the peroxy radicals, CO_4^{-7} and $C_2O_6^{-7}$, are the ultimate oxidants.

In conclusion, CO₂ enhances reactivity of O_2^{τ} by forming reactive radicals, which may cause serious damage in biological systems. Further studies on the reaction of O_2^{τ} with CO₂ in the biological systems are in progress.

- (1) J. M. McCord, Agents Actions, 10, 522 (1980)
- (2) J. M. McCord, K.Wong, S. H. Stokes, W. F. Petrone and O. English, Pathology of Oxygen (A. P. Autor
- ed.), pp75-81 (1982) Academic Press, New York
- (3) J. M. McCord, S. H. Stokes and K. Wong, Adv. Inflam. Res., 1, 273 (1979)
- (4) P. A. Cerutti, Science, 227, 375 (1985)
- (5) S. A. Weitzman, A. B. Weitberg, E. P. Clark and T. P. Stossel, Science 227, 1231 (1985)
- (6) R. C. Miller, R. Osmak, M. Zimmerman and E. J. Hall, Int. J. Rad. Oncol. Biol. Phys., 8, 771 (1982)
- (7) M. Schwarz, G. Peres, W. Kunz, G. Furstenberger, W. Kittstein and F. Marks, *Carcinogenesis*, <u>5</u>, 1663 (1984)
- (8) J. J. Van Hemmen and W. J. A. Meuling, Biochim. Biophys. Acta, 402, 133 (1975)
- (9) J. E. Repine, O. S. Pfenninger, D. W. Talmage, E. M. Berger and D. E. Pettijohn, *Proc. Natl. Acad. Sci. USA*, <u>78</u>, 1001 (1979)
- (10) G. Bartosz, W. Leyko and R. Fried, Experientia, 35, 1193 (1979)
- (11) E. W. Kellog III and I. Fridovich, J. Gerontol., 31, 405 (1976)
- (12) J. M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969)
- (13) D. T. Sawyer and J. S. Valentine, Acc. Chem. Res., 14, 393 (1981)
- (14) I. Fridovich, Arch. Biochem. Biophys., 247, 1 (1986) and refs. cited therein.
- (15) I. Fridovich, Acc. Chem. Res., 15, 200 (1982)
- (16) T. Nagano, K. Arakane and M. Hirobc, Tetrahedron Lett., 21, 5021 (1980)
- (17) H. Inoue, T. Nagano and M. Hirobe, Tetrahedron Lett., 25, 317 (1984)
- (18) E. Katori, T. Nagano, K. Kunieda and M. Hirobe, Chem. Pharm. Bull., 29, 3075 (1981)
- (19) T. Nagano, T. Hirano and M. Hirobe, J. Biol. Chem., in press
- (20) T. Nagano, K. Arakane and M. Hirobe, Chem. Pharm. Bull., 28, 3719 (1980)
- (21) T. Nagano, K. Yokoohji and M. Hirobe, Tetrahedron Lett., 24, 3481 (1983)
- (22) T. Nagano, K. Yokoohji and M. Hirobe, *ibid.*, 25, 965 (1984)
- (23) H. Yamamoto, T. Mashino, T. Nagano and M. Hirobe, J. Am. Chem. Soc., 108, 539 (1986)
- (24) T. Nagano, H. Yamamoto and M. Hirobe, The Biological Role of Reactive Oxygen Species in Skin (O.
- Hayaishi, S. Imamura and Y. Miyachi eds.), pp241 (1987), University of Tokyo Press, Tokyo
- (25) H. Yamamoto, T. Nagano and M. Hirobe, J. Biol. Chem., 263, 12224 (1988)
- (26) H. Yamane, N. Yada, E. Katori, T. Mashino, T. Nagano and M. Hirobe, Biochem. Biophys. Res. Commun., <u>142</u>, 1104 (1987)
- (27) T. Nagano, H. Yamane, N. Yada and M. Hirobe, *The Role of Oxygen in Chemistry and Biochemistry* (W. Ando and Y. Moro-oka eds.) pp449 (1988) Elsevier, Amsterdam.
- (28) T. Nagano and M. Hirobe, Protein Nucleic Acid and Enzyme, 33, 3094 (1988)
- (29) M. Hirobc and T. Nagano, Igaku no Ayumi, 127, 485 (1983)
- (30) T. Nagano and M. Hirobe, Eisei Kagaku, 34, 481 (1988)
- (31) T. Nagano, Japan Journal of Water Pollution Research, 10, 537 (1987)
- (32) J. L. Roberts, Jr., T. S. Calderwood and D. T. Sawyer, J. Am. Chem. Soc., 106, 4667 (1984)
- (33) I. Rosenthal, J. Labelled Compd. Radiopharm., 12, 317 (1976)
- (34) F. J. Blunt, P. J. Hendra and J. R. Mackenzie, J. Chem. Soc. Chem. Comm., 278 (1969)

(Received in Japan 1 May 1989)